Go Back To Home

Testing Your Turbo System

Many problems with turbo systems can be identified before the catastrophic happens through simple system testing.

Pressurize system to test for leaks

  • Clamps – Check tightness
  • Couplers – Check for holes or tears
  • CAC core / end tanks – Check for voids in welds


The turbo system in your car should be monitored to insure that every aspect is functioning properly to give you trouble-free performance.

Instrumentation used to monitor / optimize system: The most accurate way to calibrate and optimize a system is through data logging!

  1. Oil Pressure (Required to monitor engine operation)
    2. Oil Temperature (Required to monitor engine operation)
    3. Water Temperature (Required to monitor engine operation)
    4. A/F Ratio (such as a wideband sensor; required to monitor engine operation)
    5. Manifold Pressure
    6. Turbine Inlet Pressure
    7. Exhaust Gas Temperature
    8. Turbo Speed Sensor

Manifold Pressure

– Calibrate actuator setting to achieve manifold pressure required to meet hp target
– Detect over-boost condition
– Detect damaged actuator diaphragm

Back Pressure

– Monitor pressure changes in turbine housing inlet
– Affect of different turbine housing A/R’s
– Increased back pressure decreases Volumetric Efficiency thus decreasing ultimate power


– Monitor exhaust gas temperature (EGT) in manifold / turbine housing
– Adjust calibration based on temperature rating of turbine housing material or other exhaust components Turbo Speed
– Determine operating points on compressor map
– Determine if the current turbo is correct for the application and target hp
– Avoid turbo over-speed condition, which could damage turbo


11 Point Checklist

  1. Application Information – target horsepower, intended use of vehicle, etc.
    2. Air filter sizing – determine size for application needs
    3. Oil Supply – restrictor for ball-bearing turbo
    4. Oil Drain – proper size and routing
    5. Water Lines – set up for greatest thermal siphon effect
    6. Charge Tubing – determine diameter for application needs
    7. Charge-Air-Cooler – determine core size for application needs, design manifolds for optimal flow, mount for durability
    8. BOV – VTA for MAP engines and by-pass for MAF engines
    9. Wastegate – connect signal line to compressor outlet, smooth transition to external wastegate
    10. System Testing – pressurize system to check for leakage, periodically check clamp tightness and the condition of
    11. System Monitoring – proper gauges/sensors to monitor engine for optimal performance and component durability

Other Top Picked Content For You