string(5) "13497"
Filters

Accessing the Knowledge Center effectively requires a simple, one-time registration.

SWUMBLE 3-Cylinder High Efficiency Gasoline Engine for Future Electrified Powertrains

 

Author: IFP Energies Nouvelles Team: Dr.-Ing. T. Leroy, Dr.-Ing. L. Nowak, Ing. X. Gautrot, Ing. L. Martinez Alvarado, Dr.-Ing. M. Kassa, Ing. P. Granier ; Garrett Motion Team: Ing. D. François, Ing. N. Bontemps, Ing. P. Davies

Abstract: Stringent worldwide CO2 targets are leading the automotive industry towards carbon neutrality. Although the deployment of electric vehicles is part of the solution, a large part of the manufactured vehicles in 2030 will feature advanced hybrid architectures and will continue to be equipped with internal combustion engines. In this context, improvements in engine efficiency are still very important to reduce the CO2 emission of the vehicle. In parallel, it has become mandatory to reduce pollutant emissions in all driving situations to make the use of combustion engines acceptable in as many areas as possible.

In this context, IFPEN has developed a high efficiency and low pollutant emissions solution. It has coupled a high compression ratio with high Miller rate and EGR dilution to operate the engine under stoichiometric conditions. Despite these difficult conditions for flammability, a fast combustion is achieved thanks to an innovative complex in-cylinder fluid motion called Swumble. Unlike current SI engines that generally only use tumble fluid motion, this innovation combines tumble, cross-tumble and swirl motion. This combustion system enables high brake thermal efficiency and reduced particulate emissions simultaneously.

In this paper article, the development of a 3-cylinder 1.2L engine is described. It utilizes the innovative combustion system mentioned above including a dedicated airpath/EGR system and its associated control algorithms. Firstly, the combustion system is presented. Secondly, the thermodynamic layout and the design of the airpath including the turbocharger and EGR system are presented. Finally, the major control strategies of the complete system are described.

The engine shows a maximal thermal efficiency of 41% under warm steady states conditions, which is a world benchmark for a small gasoline engine.

 

See Other Relevant Content from Knowledge Center

This Turbo Bulletin covers TC 763886-5001S to 763886-5002S compressor housing orientation change instructions.
Automotive Intrusion Detection System (IDS) alerts are uniquely difficult to investigate. As vehicles age, IDS rules may be triggered by fluctuating sensor and actuator responses,…
Identify genuine Garrett turbochargers with our guide. Learn key features, packaging details, and part numbers for optimal performance and reliability.
In this resourceful webinar, we will delve into the impactful role of secondary air injection systems and explore how they contribute to cleaner and more…
In this article, we'll be explaining what Turbo Lag is, covering the causes, effects, and how you can solve this issue by simply choosing a…
Some even suggest that counterfeit units are the same as Garrett Original Reman, so in this article, we aim to dispel common myths and provide…
As the automotive industry strives for reduced CO2 and navigates stringent emissions regulations, a promising alternative powertrain technology is emerging – the hydrogen internal combustion…